
Hands on Digital Media
Mignon Game KitALPHA VERSIO

N

Olaf Val

Version 0.2

Bason Books

Diodes

Transistors

Resistors

Pushbuttons

ISP Interface

Extensioneport
MigProg
Interface

Battery Mount
on the back side

Speaker
Capacitors

Power Select
USB / Battery

Quartz

Display

Microcontroller

Short Instructions

How to assemble the game kit, write your own code and
publish you results?

Assembly

• Put all components – apart from the battery clamps into the circuit board and
solder them to it. The battery clamps are fitted on the back.

• The construction guidelines help you to put all parts in the correct positions
and the instructions for soldering show how to solder without creating bridges
or dry solders

Programming

• Install the free programming tool Arduino.
http://arduino.cc

• Add the MIGNON GAME KIT Library. You find the download „gamekit.zip“
under files at www.mignongamekit.com

• Install the USB Treiber for MIGPROG. http://www.ftdichip.com/Drivers/VCP.htm.

• Now you are able to programme your own game! Help is available through the
instructions for programming, the examples, and the overview of functions in
the appendix.

Publishing

• You can publish your experiences and results on the MIGNON GAME KIT
homepage. www.mignongamekit.com.

• Find a title for the programme you have written. If you describe it in a brief
paragraph and design a logo, it can become a popular download.

Table of Contents

Construction Guidelines 5
Step-By-Step Instructions for Construction 7
- Pushbuttons
- Diodes
- Resistors
- Quarz
- Capacitors
- Transistors
- Switch
- Speaker
- MigProg Interface
- Display
- Battery Clamps
- Microcontroller
- Extensionsport
- ISP Interface

Guide to Getting Started with Programming

Step-By-Step Instructions for Programming

Instructions for Soldering

Genesis

Gamekit Library Reference
- Short Overview of Functions
- Notes

Debugging

Circuit Diagrams
- Mignon Game Kit
- MigProg

Construction Guidelines

Put all components – apart from the battery clamps onto the front of the circuit
board. The front is the side with the assembly print. The wire legs of some
parts, such as the diodes, transistors, and resistors need to be bend to fit
through the quencher. Polarity is irrelevant in case of the sensors, resistors,
capacitors, the speaker, and the quartz.

All other components, i.e. transistors, diodes, switch and microcontroller only
function when soldered on in the right direction. Amazingly the display is
constructed symmetrically thus can be fitted either way. The battery clamps are
fitted to the back. And soldered from the front.

It is advisable to check the position of the parts once again before soldering,
as soldering is an arduous process. Correct resistors? Correct polarity of all
components? Attention! The micro-controller is not soldered directly to the
circuit board but fitted with a base.

Neither the “extension port“ nor the “ISP interface“ form part of the standard
equipment.

Step by step Instructions for

Construction

This detailed version of the instructions also delivers an
introduction to the foundations of electricity.

From amber to electricity

[Coming soon...] Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text

Pushbuttons

The six pushbuttons are easily fitted and soldered. Thus they are suited to
beginners. It is important to cut off the two little pins on the back of the
buttons. After that they can be pushed flat on to the board. When soldering on
the back fully close the holes as the button are subject to strong mechanical
pressure. (refer to the instructions for soldering page XX)

Everyone knows the function of a pushbutton. It turns the power on and off. It
is easy to differentiate between the switch and the pushbutton. The switch stays
in the on or off position while the pushbutton switches back and forth. But
when we ask for a pushbutton in a store for electrical goods we will probably
be confronted with the question: “An opener or a closer?” At this point it
becomes apparent that electricity is a complex field. An opener interrupts the
power circuit, when used; a closer lets the current pass when used. For the
Game Kit we use a closer – as is most often the case.

Diodes

With the diodes it is most important that the small line is located on the left
as on the assembly print. When the diodes are fitted the wrong way round no
power reaches the circuit board. The diodes are divided by the cardboard strips,
after that the small wires are bend so that they fit easily through the quencher
on the board. In case you use a bending machine, use the second lowest
setting.

Our senses cannot perceive the functioning of diodes. Thus we have to resort to
models and analogies as always when we cannot understand something. In this
case the most popular analogy is the water model. Imagine power is like water

running from plus- the tap towards minus- the drainpipe. The diode is a valve
causing the water to flow in one direction only. Thus the diodes prevent that
something breaks, for example, in case we put the batteries in the wrong way.
Light emitting diodes serve the same purpose and glow additionally.

Resistors

In principle the resistors are fitted in the same way as the diodes. The polarity
is not important but the various values of the resistors such as 75 Ohm and 8,2
k must not be mixed up. You can compare them to the photograph (see image
XX). The safest way is to measure the values is with a voltmeter.

To this end we set the measuring device to Ohm value, as „Ω“ Ohm are
the units resistors are measured in. The best start is “10 k” i.e. a measuring
sensitivity of 10,000 Ohm. You then place a resistor at the two test prods
(image XXX) The display now shows how many kilo Ohm resistance the resistor
has. If the value is less than zero the measuring sensitivity needs to be lowered.
To do so the switch is turned anticlockwise by one level to “100”. Now the
pure Ohm values, without the „k“ (Kilo) are displayed. The measured values
can easily be assigned despite measuring discrepancies. The discrepancies are
caused on the one hand during the process of measuring as factors such as
body resistance, humidity influence the outcome. On the other hand, resistors

are inexact within a relatively large range of tolerance.

As the name suggests, resistors hinder or lower the circuit of power. They
are used to protect parts of the construction such as the LEDs. As the micro-
controller works at 5 V the LEDs, that are designed for 3,7 V would fuse without
the resistors.

Quartz

As with the quartz watch the quartz of the Game Kit is responsible for the
exact pulsing of the microcontroller at a frequency of 16 megahertz. The rhythm
in which the processor processes data usually lies at about 8 MHZ according
to the internal pulse generator. Through the quartz we connect an external
pulse generator that causes the processor to work twice as fast and it runs so
accurately that we could build a watch from the game kit.

Capacitors

On both sides of the quartz 22p capacitors are connected to ensure an exact
swinging. The biggest of the capacitors is fitted behind the 10 k resistor at the
top end of the microcontroller.

In all circuits interfering effects are possible that may lead to mistakes. For

example, if the Game Kit is connected to the power via the computer, then the
electric current flows not always evenly but is subject to constant and quick
fluctuations. This so called “noise” is reduced through capacitors. Like small
batteries, capacitors take on voltage peaks, store the power, and release it
when the voltage decreases for a moment.

Transistors

The transistors are fitted above the display with the flattened side turned to the
bottom.

With a transistor it is possible to switch one power-signal on and off with
another one. Thus the transistor is able to represent binary conditions – i.e.
zero and one as on and off. This makes it the basic module of a computer.
The first electronic computers worked with electro-mechanical relays and tubes,
these are however slower, more prone to interferences, and much larger than
transistors.

In the context of the Mignon Game Kit we use transistors to combine a relatively
weak power signal with a somewhat stronger current. The five transistors
operate the ground wires for the five rows of the display. As seven LEDs are
connected in one row the microcontroller would overcharge, if it was connected
directly to the pin of a controller.

Switch

The switch is fitted below the diodes. It switches back and forth between
electrical power supply via USB and via battery. Before connecting the game kit
to USB the batteries should be removed, otherwise it is not possible to switch it
off.

Speaker

The speaker is an inexpensive Piezo element that is capsuled in a plastic case.
The speaker is soldered beneath the two control keys. Here, too, polarity is
irrelevant.

MigProg Interface

The interface of the Mignon programming adapter “MigProg” consists of a
simple angled
multi-pin connector of five pins. The short pins are soldered, while the long pins
protrude through the notches in the board.

The next two lines serve the purpose of communication between the computer
and the game kit. In the process the data is transferred with the TX line (yellow
LED) to the game kit and the game kit answers to the computer via the RX line
(green LED).

The transfer of data works via a so-called “serial” interface (Com Port). As this
connection is dated nowadays we work with the USB port and a driver that
emulates the old serial interface (virtual comport). Serial communication has
many applications. In connection with the extension port the game kit becomes
an interface between computer and the outside world that may be used for
a variety of experiments involving sensors, motor control units, and much
more. However, the most important application of the communication with the
computer is the programming of the game kits.

As the game kit needs to restart for programming the MigProg possesses a
reset line on the fifth pin.

For programming a small programme called “bootloader” is located on the
microcontroller. Immediately after being switched on- in a brief break before
the game kit starts- the bootloader checks, if there is a new programme
coming from the computer. If there is data being send from the computer the
bootloader erases the memory of the game kit and automatically installs the
new software that starts up shortly after.

Instead of the MigProg a USB to serial, or TTL Adapter can be used (also see:
Programming Hardware page XX).

Display

Against all expectations the display is constructed symmetrically. The orientation
of the
display does not matter when it is placed in the middle of the circuit board in
landscape format.

It consists of a circuit board cast in plastic material. On the board LEDs are
placed in a grid and they are wired in such a way that the five rows are each
connected to the minus poles. The seven columns are each connected to the
diodes at the plus poles. Through this grid it is possible to reach each of the 35
points –similar to the game “Battleships”- even though there are only 5 + 7 =
12 circuit points.

Battery Clamps
The Battery holding device is the only part of the construction set that is put
on the circuit board from below and that is thus soldered from above. Small
cardboard discs are placed between circuit board and holding device in order
to prevent short-circuiting with ground wire. During the soldering the big sheet
metal parts function as cooling elements therefore it takes a while until the
battery holding device reaches a hot enough temperature to merge with the
solder.

Microcontroller and Base

The IC-base, i.e. the base for the microcontroller is marked with a half- moon
notch. Even though it is not relevant on a technical level the marking should be
placed as indicated on the assembly print in order to assure the microcontroller
is fitted the right way round. For soldering the base needs to be fixated as it
easily slips from the quenchers when turned down slightly. Please use a fire
resistant item to prevent burns.

If need be the IC-base could be omitted, but once the microcontroller is fixed
to the board it cannot easily be exchanged. As the microcontroller may be
damaged through mistakes in the soft- or hardware the base constitutes an
extra security. Missing parts can be ordered using the Internet.

The microcontroller needs to be pressed into the base straight, from above with
a bit of pressure- its best to use both thumbs. You have to pay attention that
none of the 28 small legs buckles. It is best to wait to the end, till after a test
as described in the chapter “Initial Start-Up” [page XX], to fit the microcontroller
to the base.

ISP Interface

In order to programme the game kit via the MigProg interface you need a
microcontroller already equipped with a Bootloader programme. The enclosed
controller is fitted with such a Bootloader. When you buy a new controller or
loose the Bootloader programme through a mistake it can be re-installed via the
ISP interface. To do so you need an AVR-ISP-programmer (see: Programming
Hardware, page XX). As this interface is only of interest to advanced users it
does not belong to the standard equipment of the construction set. It can be
ordered via the Internet.

Extension Port

Through the extension port further devices such as light-emitting diodes,
motors, relays, or sensors can be connected to the game kit (see: Extension
Port page XX). As this interface is only interesting for further experiments,
this socket board, too, does not belong to the standard equipment of all
construction sets. It can be ordered through the Internet.

Initial Start-Up

Before fitting the microcontroller you should check that the power supply has
not short-circuited through a soldering mistake. To do so the batteries are
inserted from below. Small symbols show the direction they need to be placed
in. You then check with the tip of your fingers for about half a minute if they
become warm. If the batteries stay cold everything is alright. In the case of a
short-circuit a lot of power flows that may destroy the microcontroller and the
batteries warm up. If you have a voltmeter you can check on pin 7 (plus) and 8
(minus) in the bottom row from the left, if the expected 4,5 Volt occur. That is a
clear sign that everything is alright.

Please turn of the game kit after this test. Now the microcontroller can be fitted.
After that turn the game kit on again. Now a test programme should start. If the
frame around the display glows without gaps the display is soldered without
mistakes. The six points in the middle of the display signify the six buttons if
they turn of by applying pressure to the respective button the sensors are fully
functional, too.

Finally a beeping noise should be audible to confirm that the speaker is also
working. Afterwards the test programme turns itself off and a game begins.
Which game depends on which version of the construction set it is.

In case the test programme discloses a mistake, you find detailed help in the
chapter “debugging” on page XX.

Guide to Getting Started with

Programming

• Install the Arduino software. You find the download on the Arduino homepage
under „downloads“ (on the left top). Unzip the folder and move it to your folder
“programmes”. Open the folder and move the logo to the dock.

• Download the Game Kit Library. The file is called “gamekit.zip“ and is linked
to the homepage through “files”. Through unzipping the file you get a folder
that you move to the Arduino folder: hardware/libraries/gamekit, so the Arduino
software can locate it. In the process the Game Kit Examples are installed auto-
matically.

• Look for the suitable Driver MIGPROG (FTDI Virtual Serial Port) for your com-
puter at: http://www.ftdichip.com/Drivers/VCP.htm and install it. For Windows it
is advisable to use the „setup executable“ on the right hand side.

• Connect MIGPROG with the computer via USB. The Power LED of the MIGPROG
shows that the device is powered. Remove the batteries from the Game Kit and
connect the MIGPROG. When you turn the switch to the left to USB the Game Kit
runs with the computers power.

• Start the Arduino software and open one of the examples. You find that in the
file menu “Sketchbook“. Allocate the Serial Port to the the software. After cor-
rect installation of the FTDI driver the “usbserial” adapter should come first in
the “Tools/Serial Port” list”. Select it so a checkmark appears (Under Windows
you can check in the “Device Manager” which com-port number has been as-
signed to the USB-to serial driver.)

• The command „Upload to I/O Board“ in the file menu (control + U) installs the
example on the game kit. In the process the memory is overwritten and thus the
previous file deleted. The LEDs of the MIGProg and the speaker of the game kit
convey the programming process. The system should not be interrupted dur-
ing programming, as the microcontroller may turn into a state where it is not
programmable anymore otherwise.

• You find more games and programmes on the homepage. Download the files,
unzip them and move them to the Arduino- Sketchbook- Folder. (Windows: Per-
sonal Files/ Arduino) (Mac:Documents/Arduino) (Linux: ~/sketchbook/)

• Now you are ready to begin writing your own programmes. The overview of
functions and the examples as well as the step-by-step programming instruc-
tions help you. (See pages XXX, XXX, and XXX)

Step by Step Instructions for

Programming

These Instructions combine an introduction to
programming with an outline of the historic development
of the first computer games.

All printed programming codes can be found on the Mignon Game Kit homepage
(www.mignongamekit.com) under “How-To” for download. Beginners are
advised to hand- copy small programmes to thus gain access to the working
process of programming.

Background History of Computer and Games

Apart from realising military applications games were also developed on the
very first computers. Computers did not yet feature screens and keyboards and

2006 Ralph Baer (left) receives the National Medal of Technology from president George W. Bush (right)

the developed games had very easy structures such as the “Nim Game” or the
XOX Game” on the EDSAC (1949 UK). Twelve years later, after the invention
of the transistor and microchips, more complex games such as “Space War”
emerged. But these could only be played in the few laboratories in which
computers were available. The situation changed when the television ingeneer
Ralph Baer had the idea to sell inexpensive Video Games to private households
in 1966.

At the time televisions generally had an inbuilt test image generator. While
working on such a machine Bear observed how facinating the playful
manipulation of the image through rotary switches was. His founding idea was
to built a device that anyone could connect to their television. This device
would draw simple synthetic forms on the display through analogue circuits- i.e.
without a computer. From this games developed.

Exercise 1: “Creation of a synthetic audio signal”

In essence our first homemade programme consists of the basic structure
setup and loop. Programming means writing commands that the computer can
recognise underneath oneanother. When starting the programme the commands
are executed from top to bottom. Firstly, there is an area for the presetting
that is only exectuted once per start-up. After that a (generally endless) loop is
processed. Both areas are usually framed by curly brackets.

• “File/New” is the start of a new Arduio file (Skatch)

• A commentary is the term for something that is supposed to happen. To mark
such lines as commentary they begin with two forward slashes “// ”

• The connection for the speaker is to be defined as the output.

• At the exit the power is constantly turned on and off.

• We built the “Setup” and “Loop” structure:

void setup(){
// set sound port as output
}

void loop(){
// turn the power on and off
}

• Please note the differentiation between the round and curly brackets.

• Now we still need the appropriate commands to implement what is described
in the commentaries.

• pinMode (number of connection, OUTPUT or INPUT);

• digitalWrite (number of connection, HIGH or LOW)

• Commands always end with a semikolon “;”

• Spacing and word wrap do not effect the functioning, but are important for
the readability of the codes. The indents in particular keep interlockings lucid.

The first video game consisted of a dot placed on the screen. By use of a riffle
endowed with a photocell the dot on the television could be “shot”.

Excercise 2: “A Dot”

We put a dot on the display of the game kit. To do so we use the command
„gamekit.set_pixel(row, collumn, value)“. As this command comes from the
Game Kit Library, we need to first integrate and activate it. This happens with
the following two programming rows: “#include <gamekit.h>” and “gamekit.
Begin();”

void setup(){
 // set sound port as output
 pinMode(9, OUTPUT);
}

void loop(){

 // turn the power on and off
 digitalWrite(9, HIGH);
 delay(1);
 digitalWrite(9, LOW);
 delay(1);
}

//One Dot

#include <gamekit.h>

void setup(){
 gamekit.Begin();
}

void loop(){
 gamekit.set_pixel(2,3,15);
}

As we are missing the rifle sensitive to light we have to cease modelling the
first video game at this point. But if one carries on putting points on the display
it is possible to create signs e.g. Smileys with this little programme.

Ralph Baer continued his experiment “video game”. The next step involved
moving the dot with two rotary switches and he produced first sketches of a
Joystick for controlling the dots.

Excersise 3: “Move A Dot”

To move the dot the keys are queried with the following function:

// Move one Dot

#include <gamekit.h>

int row = 2;
int column = 3;

void setup(){
 gamekit.Begin();

}

void loop(){

 gamekit.set_pixel(row,column,15);

 if(gamekit.button_pressed(butt_UP)){
 gamekit.set_pixel(row,column,0);
 row--;
 }

 if(gamekit.button_pressed(butt_DOWN)){
 gamekit.set_pixel(row,column,0);
 row++;
 }

When a key is operated the commands in between the curly brackets are
executed.

In order to make the dot moveable a variable is added to the „gamekit.set_
pixel()“ function for the position of the dot. These variables need to be defined
with the command int (Integer) before setup. The value of these variables are
lowered or raised by one with the orders “++” and “- -“. Thus the dot moves
across the display. Lowering the brightness value from 15 to 0 erases the old
dot.

if(gamekit.button_pressed(Konstante)){

}

This “Move One Dot” programme can easily create a “paint programme” by
removing the erasure of the dots from the button query. In a further step the
putting and erasing of dots can be coupled to the functioning keys.

The historic development now reached the collision query and thus a very
substantial element of computer games. Ralph Baer expanded his circuits in a
way that generated two dots. A second player could control the second dot.
Now it was possible to play “catch”.

 if(gamekit.button_pressed(butt_LEFT)){
 gamekit.set_pixel(row,column,0);
 column--;
 }

 if(gamekit.button_pressed(butt_RIGHT)){
 gamekit.set_pixel(row,column,0);
 column++;
 }

}

Exercise 4: “Chasing Game“

As the Game Kit only disposes of six sensors the second player runs diagonally
in the chasing game. For the recognition of the collision we use an “if”
query. Please note: to compare the two dots position the double equal sign
is used. The single equal sign is used to allocate values to the variables. So,
we differentiate between an equal sign for allocation and an equal sign for
comparison. The comparisons of the “if”- query are set in round brackets. In
this case two conditions need to be true at the same time. They are connected
by “&&”.

To move two dots on the display the variables for the second dot are doubled
(row2, column2). And the second dot is allocated the blink value 18 in order to
differentiate between the two dots.

For the collision the blink value is set to 20. The “delay()” function pauses the
game for two seconds. After that the dots return to their starting positions.

// Chasing Game

#include <gamekit.h>

int row1 = 1; // Dot1
int column1 = 1;

int row2 = 3; // Dot2
int column2 = 5;

void setup(){
 gamekit.Begin();

}

void loop(){

 gamekit.set_pixel(row1,column1,15);
 gamekit.set_pixel(row2,column2,18);

 if(gamekit.button_pressed(butt_UP)){
 gamekit.set_pixel(row1,column1,0);
 row1--;
 }

 if(gamekit.button_pressed(butt_DOWN)){
 gamekit.set_pixel(row1,column1,0);
 row1++;
 }

 if(gamekit.button_pressed(butt_LEFT)){
 gamekit.set_pixel(row1,column1,0);
 column1--;
 }

 if(gamekit.button_pressed(butt_RIGHT)){
 gamekit.set_pixel(row1,column1,0);
 column1++;
 }

 if(gamekit.button_pressed(butt_FUNCA)){
 gamekit.set_pixel(row2,column2,0);
 column2--;
 row2--;
 }

 if(gamekit.button_pressed(butt_FUNCB)){
 gamekit.set_pixel(row2,column2,0);
 column2++;
 row2++;
 }

//collision detection
 if((row1 == row2)&&(column1==column2)){

 // blink for 2 seconds
 gamekit.set_pixel(row1,column1,20);
 delay(2000);

 // go back to start positions
 gamekit.set_pixel(row1,column1, 0);
 row1 = 1;
 column1 = 1;
 row2 = 3;
 column2 = 5;
 }
}

The casing game gives a first impression of the possibilities of a videogame,
but even during pioneering times Ralph Baer and his co-workers realised, that
the game was not entertaining enough to promise great marketing success.
Shortly after, the breakthrough was brought on by a special circuit that enabled
the presentation of a dot on the screen that moved without being moved by a
player: the ball!

Exercise 5: “Mignon Pong”

We add a third dot and built the movement of the first two dots in a way that
makes them move up and down on the left and the right like pong rackets. The
magical programming row that takes care of the independent movement of the
ball is very simple:

The variable “column3” is allocated a value that corresponds to its current value
plus the value of the variable “columnM” in this case +1 or -1. At every call of
this function the ball moves one dot to the right or to the left.

To ensure the ball moves nicely and slowly we write the entire control of the
ball in an if-loop that queries the system counter of the game kit and only

„column3 = column3 + columnM;„

moves the ball at every hundreds rise of the counter. We need another variable
“balltime” in which the current value of the counter is saved once, and than
compared with the consecutive counter until it has moved on one hundred
steps.

If the collision query is changed in such a way that the ball „hits“ the rackets
and in doing so the value for the horizontal movement “columnM“ changes its
sign the game almost looks like Pong. The ball moves from racket to racket but
the vertical movement of the ball is missing. For this we use – for simplicities
sake- random values, that are generated by the command “random()”. At the
same time another if- query becomes necessary, that prevents the ball leaving
the display on the top or bottom. Here again by the changing of the sign of the
variable for movement “rowM” a rebound is generated.

To prevent the same random values to be generated every time the game kit
is switched on the beginning of the series of random values, the so called
“randomSeed”, is set to a changing value in the “Setup”. This value is best
measured at the analogue input of the extension port. If no sensors such as
photocells, microphone, or pressure sensor, are connected a noise is measured
that delivers good coincidental values.

// Mignon Pong

#include <gamekit.h>

int row1 = 2; // Dot1
int column1 = 0;

int row2 = 2; // Dot2
int column2 = 6;

int row3 = 2; // Dot 3
int column3 = 3;
int rowM = 1;
int columnM = 1;
int balltime = 0;

void setup(){
 gamekit.Begin();
 //set the random seed to a noise value which is measured on the
analogue input pin 5 of the extensions port
 randomSeed(analogRead(5));
}

void loop(){

 gamekit.set_pixel(row1,column1,15);
 gamekit.set_pixel(row2,column2,15);
 gamekit.set_pixel(row3,column3,15);

 if(gamekit.button_pressed(butt_UP)){
 gamekit.set_pixel(row1,column1,0);
 row1--;
 }

 if(gamekit.button_pressed(butt_DOWN)){
 gamekit.set_pixel(row1,column1,0);
 row1++;
 }

 if(gamekit.button_pressed(butt_FUNCA)){
 gamekit.set_pixel(row2,column2,0);
 row2--;
 }

 if(gamekit.button_pressed(butt_FUNCB)){
 gamekit.set_pixel(row2,column2,0);
 row2++;
 }

 // move ball
 if(gamekit.get_systemcounter()> 100+balltime){
 balltime = gamekit.get_systemcounter();

 // collision detection 1
 if(((row1 == row3+rowM)&&(column1==column3+columnM))||(
(row2 == row3+rowM)&&(column2==column3+columnM))){
 columnM = columnM*-1;
 rowM = random(3)-1; // find a new angle for the balls path by
chance
 if(row3==4) rowM = random(2)-1;
 if(row3==0) rowM = random(2);
 }

 gamekit.set_pixel(row3, column3, 0); // turn the old dot off

 column3 = column3 + columnM; // move the dot further

 // bounce at top and bottom
 row3 = row3 + rowM;
 if(row3 +rowM <= -1){
 rowM = 1;
 }
 if(row3 +rowM >= 5){
 rowM = -1;
 }
 }
}

Now we reach a point at which the elementary principles of digital games
have been worked through. With the learned functions new variations can be
invented and games can be programmed easily.

At this stage of development Ralph Baer tried to market his product
unsuccessfully in 1967. Only years later, in 1972 he was able to convince the
company Magnavox to realize his vision with the “Magnavox Odyssey”. The
first video console of the world was based on simple functions: Dots could be
moved across the screen, moved by themselves, and it was noticeable when
they hit each other. There were no sounds, no images, and no counter. Thus the
“Magnavox Odyssey” included foils -with printed on motives of games that were
stuck on the screen- and cards for counting scores.

So far, our exercises lack these components that turn an abstract game principle
into an attractive videogame. In regard to this various possibilities exist that
were discovered step-by-step in the history of computer games and lead to
great commercial success. “Space Invaders” introduced the concept of several
lives of the player in 1978. A figure in a game was given a name for the first
time with “Pac-Man” in 1980, and the first character was established with
“Mario” in 1981.

6. Exercise: „Intro Image“

We design a series of images with which we can represent small stories that
are suitable to combine an abstract structure of a game with a motive. Images,
sounds, and melodies raise the level of entertainment: There is identification
with the avatar, an increase of sensuous appeal, and fantasy is stimulated.

To draw an image on the display we can work with the already used “set_pixel”

function. However, the “load_image” function from the Game Kit Library is more
comfortable.

As the images use a special type of variables the library “pgmspace” needs to
be integrated. After that the images are immediately defined with the variables.
This is a task for the advanced: One uses an array of Unsinde Integer 8 bit
variables that are placed in the programme memory. You do not have to deal
with that right now! The easiest way is to insert the respective codes using
“copy and paste”. Instead of “myman” any chosen title can be used for the
image. The five rows of numbers with the seven values represent the rows of
the display with their seven LEDs. At the value of zero the diode is turned off.
At the maximum value of 15 it shines the brightest. The values in between allow
for working withnuances. The “load_imge” function loads the image onto the
display.

uint8_t myman[5][7] PROGMEM = {
// Dot Values
};

gamekit.load_image(myman);

// Intro Image

#include <gamekit.h>
#include <avr/pgmspace.h>

uint8_t myman[5][7] PROGMEM = {
 0 ,0 ,0 ,15,0 ,0 ,0 ,
 0 ,3 ,3 ,3 ,3 ,3 ,0 ,
 0 ,0 ,0 ,3 ,0 ,0 ,0 ,
 0 ,0 ,3 ,0 ,3 ,0 ,0 ,
 0 ,0 ,3 ,0 ,3 ,0 ,0 ,
};

void setup(){
 gamekit.Begin()
}

void loop(){
 gamekit.load_image(myman);
}

7. Exercise: „Intro Animation“

You can easily produce an animation by simply defining several images and
open them one after another. The speed of the changing of the pictures is de-
fined by the “delay” commands behind the “load_image” commands.

The following example follows a more elegant path. Again only one image is
defined. However, it functions like a film reel. In the example the dancing man
consists of a series of five images. This film reel is pushed from the bottom to
the top across the display. Thus an animation is generated.

To load an image that is bigger than the 5 x 7 grid you use the “load_map”
command. In this case the image is moved in its entirety, i.e. it jumps up 5
rows. For the line- pulling the variable “i” is used, that is raised with the com-
mand „i+=5“ at each round. An „if“ command returns „i“ to zero.

// Intro Animation

#include <gamekit.h>
#include <avr/pgmspace.h>

uint8_t dancingman [25][7] PROGMEM = {
 0 ,0 ,0 ,9 ,0 ,9 ,0 ,
 0 ,9 ,9 ,9 ,9 ,0 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,
 0 ,9 ,0 ,0 ,9 ,0 ,0 ,

 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,9 ,9 ,9 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,

 0 ,9 ,0 ,9 ,0 ,9 ,0 ,
 0 ,0 ,9 ,9 ,9 ,0 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,

 0 ,0 ,0 ,0 ,0 ,0 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,9 ,9 ,9 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,0 ,9 ,9 ,0 ,

 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,9 ,9 ,9 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,0 ,9 ,0 ,0 ,
 0 ,0 ,0 ,0 ,9 ,0 ,0 ,

};

void setup(){
 gamekit.Begin();
}

int i = 0;

void loop(){

 gamekit.load_map((uint8_t *) dancingman, 25, 7, i, 0);
 delay(600);

 i=i+5;

 if(i >= 25)
 i = 0;
}

8. Exercise: „Simon 6“

Similar to the historic development of computer games all exercises so far
disregarded the sound. Sound design and musical design often took second
place. The already mentioned first game console “Magnavox Odyssey” did
not feature audio at all for the reason of cost. The first computer game sound
appeared in Nolan Bushnell’s Pong version in 1972. At the time this artificial,
electronically generated “Sonar-Blip” Sound was unusually fascinating and
hypnotic. Six years later, in 1978 “Simon (“Senso” in Germany) was the first
computer game on the market that integrated sounds and musicality in the
game. The game invented by Ralph Baer generated random series of sounds
that could be memorised and replayed like melodies.

[Coming soon...] Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text

// Simon 6

#include <gamekit.h>
#include <avr/pgmspace.h>

Code is coming soon...

Code is coming soon...

9. Exercise: „Mignon Noise Generator“

In 1977, during the Christmas trade Nolan Bushnell marketed his computer game
console “Atari VCS 2600”. It became a classic. This console was equipped with
a simple audio processor “Atari TIA” that was able to play in two voices vari-
ous undulations in mono through the speakers of the television set. Games like
“Combat” featured interesting sounds, such as the experimental motor sound of
the tanks.

[Coming soon...] Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text

// Mignon Noise Generator

#include <gamekit.h>
#include <avr/pgmspace.h>

Code is coming soon...

Code is coming soon...

10. Exercise: „Intro Melody“

“Space Invaders” was probably the most important milestone in the history of
computer game development through several groundbreaking innovations. The
game by Toshihiro Nishikado developed strong dramaturgical characteristics. For
example, the player possessed three lives for the first time. An adaptive sound-
track that underlined the increasing menace through the attacker supported the
suspense; the quicker the Space Invaders moved the quicker the bass sounds
played.

If you want to underscore your Mignon Game Kit game with sounds you en-
counter the problem that the playback of the audio by use of the “play_sound”
function always pauses the programme just like a pause through “delay” would.
The “play_melody” function remedies things. Through this function the Game Kit
Library offers a comfortable possibility to accompany animations or games with
music. You are spared programming a music player yourself. Once started the
melody plays in the background while the normal programme continues.

// Intro Melody

#include <gamekit.h>
#include <avr/pgmspace.h>

uint16_t melody[][2] PROGMEM =
{
 m_set_volume, LOUD,

 //------------ 1
 m_16_dot_note, m_G4,
 m_rest , m_16_rest,
 m_16_dot_note, m_D4,
 m_rest , m_16_rest,
 m_16_dot_note, m_E4,
 m_rest , m_16_rest,
 m_16_note , m_F4,

 m_rest , m_16_rest,
 m_16_note , m_E4,
 m_rest , m_16_rest,
 m_16_note , m_D4,
 m_16_note , m_C4,
 m_rest , m_16_rest,
 m_16_note , m_C4,
 m_rest , m_16_rest,
 m_16_note , m_E4,
 m_rest , m_16_rest,
 m_16_note , m_G4,
 m_rest , m_16_rest,
 m_16_note , m_E4,
 m_rest , m_16_rest,
 m_16_note , m_C4,
 m_rest , m_16_rest,
 m_16_note , m_D4,
 m_rest , m_16_rest,
 m_16_note , m_D4,
 m_rest , m_16_rest,
 m_16_note , m_E4,
 m_rest , m_16_rest,
 m_16_note , m_F4,
 m_rest , m_16_rest,
 m_16_note , m_G4,
 m_rest , m_16_rest,
 m_16_note , m_E4,
 m_rest , m_16_dot_rest,
 m_16_note , m_C4,
 m_rest , m_16_dot_rest,
 m_16_note , m_C4,
 m_rest , m_16_dot_rest,

 m_stop , 0
};

void setup(){
 gamekit.Begin();
 gamekit.play_melody((uint16_t *) melody);
}

void loop(){
}

Instructions for Soldering
Attention! Before turning on the machine: A soldering iron is a very dangerous
tool! The iron becomes so hot that even the smallest and shortest contact can
lead to sever burns. Everything that touches the soldering iron such as the wire,
the construction parts and the stand of the soldering iron also get very hot!
Children should be at least ten years old before beginning to solder. Accidents
are best avoided by creating the optimum working conditions and a concentrat-
ed atmosphere. For that you need good lighting, a big fireproof worktop, time
and quietude. In any case you need a secure space to place the soldering iron.
If you do not have a stand it is possible to use a heavy ashtray, for example.
When equipping the workstation it is important to make sure that the soldering
iron is nowhere near a 230 Volt cable!

You need the right tools for a successful introduction to soldering. The solder-
ing iron should posses a fine, thin top and the soldering wire should also be
fine and thin (maximum diameter: 1 millimeter). For beginners a lead- containing
electronics solder with the most possible flux is most suitable. (Lead- free solder
would be less hazardous to health but is more difficult to use for now). DIY-
Stores often feature fairly coarse tools only, which are totally unsuited for the
work on the Mignon Game Kit. They are probably conceived for the work on rain
gutters. The electrical goods store is where you will be properly advised. Fairly
inexpensive soldering equipment is sufficient for the one-time use. However, it
may break after only a few working days. Proper handling provided more expen-
sive quality products are indestructible.

Soldering work is precession work. At best, you work in the middle of the table
where both elbows can be firmly placed on the work- top. Clean the soldering
tip frequently by swabbing it on a wet sponge or an handkerchief. Do avoid
breathing in the rising smoke! Wash your hands -with which you touched the
soldering wire- well after finishing the work.

The process of soldering is as follows: Both elements to be soldered are heated
with the soldering iron at the same time. When the soldering wire is held to
the tip of the soldering iron it melts. In the process the flux contained in the
soldering tin flows to the soldering point and evaporates there. Thus the flux is
a great help. It takes the surface tension of the solder. Cold solders- soldered
connections that do not pass the power sufficiently- appear when not enough
flux got to the respective part, when one of the two elements to be connected
was not hot enough, or when to much solder was used. With the Mignon Game
Kit the silvery surfaces; “eyelets” are soldered to the wires of the construction
parts. The right dosage of solder just about closes every eyelet. If the solder

forms small pellets too much was used. Too much solder can cause unwanted
bridges and thus lead to short circuits on the main board.

To remove the solder you heat the soldering point and try to liquefy the solder
as much as possible and remove it with a suction pump as quickly as possible
before it becomes solid. To unsolder a construction part you try to remove the
solder with the pump as well as feasible. Often it remains impossible to remove
the construction part. In such a case you fix the main board with a bench vice
or a helping hand in a way that enables you to place the soldering iron from
one side while you remove the construction part with pliers.

Genesis
The “Mignon Game Kit” project developed from the two works “PaintOn_
Games” and “GameBolx”. Both of these precursors of the game kit drafted hard-
and software visions of how to confer Friedrich Fröbel’s building blocks on the
digital world. In the beginning the impulse for this was an aesthetic interest.

However, the multitude of reactions to these two works quickly referred to a
pedagogical dimension of the approach and finally let to the development of
the “Mignon Game Kit” construction set. Thus a hybrid project developed in
the common ground of art, education, and technology. The artistic experiment
became a product with a multitude of links to chances and problems that
emerged in the areas of teaching and education in the course of the change to
an information-society.

The “Mignon Game” reduces mobile game consoles such as the Game Boy or
the “Play Station Portable” -and along with those interactive digital media per
se - to their minimal level on which they function symbolically. The concept
of the construction associates the introduction of electronics and information
technology with computer games. This connection is advantageous for both

sides; the consumers of video games become interested in the structures behind
the user interface, engineers and programmers in the making are challenged and
motivated by the playful element. History can also justify the linkage of games
and technology, as the improving performance of personal computers stands in
close connection to the computer game industry.

The games of the “Mignon Game Kits” can also be deduced historically. The
minimal technical specifications, such as 35 pixel resolution and 8 Kilobyte
memory limit the game design. Even simple game motives such as “Pong” or
“Pac Man” can only be realised through creative abstraction on this basis. Thus
the game itself is a creative act that challenges imagination and fantasy.

Gamekit Library Reference

Short Overview of Functions

void Begin();
Initialises (i.e. starts) the Gamekit.

void set_pixel(row, column, value);
Allocates the pixel value in the row and the column.
Values between 0 and 15 are levels of brightness, higher values make pixels
blink, or the like.

uint8_t get_pixel(row, column);
Reads the value of the pixel in the „row“ and the „column“.

void load_image(Bild);
Loads the image onto the display (see the example „load_image“).

void load_map(uint8_t *, uint8_t, uint8_t, uint8_t, uint8_t); (for the advanced)
Loads a detail of a large image to the display (see example „load_map“).

void assign_pixelfunction(uint8_t, uint8_t(*)(uint8_t, uint8_t, uint32_t)); (for the
very advanced)
Allocates a value of pixels (has to be higher than 15) to a function.

uint32_t get_systemcounter();
Reads the system counter. The system counter rises by one when the display is
redrawn.

uint8_t get_buttons(); (for the very advanced)
Reads all keys at the same time.

boolean button_pressed(button);
Checks if the key “button” is pressed.
„button“ may be:
butt_UP (Up)
butt_DOWN (Down)
butt_LEFT (Left)
butt_right (Right)
butt_FUNCA (function A)
butt_FUNCB (function B)

void wait_button_pressed(button);
Waits untill the key “button” is pressed.

void wait_button_released(button);
Waits untill the key “button” is released.

void set_button_timing(first, common); (for the advanced)
Changes the speed of the repetition of the keys (see example “button_
pressed”).

void play_tone(frequency, duration, volume);
Plays a sound of the pitch “frequency” over a period of time (in milliseconds)
Sound level can be “LOUD” for loud and “SILENT” for silent.

void play_melody; (for the advanced)
Plays the melody (see example “play_melody”).

uint16_t get_current_melody_event(); (for the very advanced)
Reads which “play_melody” is playing currently.

void set_current_melody_event(number); (for the very advanced)
Jumps to the place “number” of the melody.

The Notes

Reads the notes in the “playMelody” function
The English notation is used: C, D, E, F, G, A, B

#define m_C2 65
#define m_Bt2 m_C2
#define m_Ct2 69
#define m_Db2 m_Ct2
#define m_D2 73
#define m_Dt2 78
#define m_Eb2 m_Dt2
#define m_E2 82
#define m_Fb2 m_E2
#define m_F2 87
#define m_Et2 m_Et2
#define m_Ft2 92
#define m_Gb2 m_Ft2
#define m_G2 98
#define m_Gt2 104
#define m_Ab2 m_Gt2
#define m_A2 110
#define m_At2 117 //46
#define m_Bb2 m_At2 #define m_B2 123
#define m_Cb2 m_B2

#define m_C3 131
#define m_Bt3 m_C3
#define m_Ct3 139 //49
#define m_Db3 m_Ct3
#define m_D3 147
#define m_Dt3 156
#define m_Eb3 m_Dt3
#define m_E3 165
#define m_Fb3 m_E3
#define m_F3 175 //53
#define m_Et3 m_E3
#define m_Ft3 185
#define m_Gb3 m_Ft3
#define m_G3 196
#define m_Gt3 208
#define m_Ab3 m_Gt3
#define m_A3 220 //57

#define m_At3 233 //58
#define m_Bb3 m_At3 #define m_B3 247 //59
#define m_Cb3 m_B3

#define m_C4 262 //60
#define m_Bt4 m_C4
#define m_Ct4 277
#define m_Db4 m_Ct4
#define m_D4 294
#define m_Dt4 311
#define m_Eb4 m_Dt4
#define m_E4 330
#define m_Fb4 m_E4
#define m_F4 349
#define m_Et4 m_E4
#define m_Ft4 370
#define m_Gb4 m_Ft4
#define m_G4 392
#define m_Gt4 415
#define m_Ab4 m_Gt4
#define m_A4 440
#define m_At4 466
#define m_Bb4 m_At4 #define m_B4 494 //71
#define m_Cb4 m_B4

#define m_C5 523 //72
#define m_Bt5 m_C5
#define m_Ct5 554
#define m_Db5 m_Ct5
#define m_D5 587
#define m_Dt5 622
#define m_Eb5 m_Dt5
#define m_E5 659
#define m_Fb5 m_E5
#define m_F5 698
#define m_Et5 m_E5
#define m_Ft5 740
#define m_Gb5 m_Ft5
#define m_G5 784
#define m_Gt5 831
#define m_Ab5 m_Gt5
#define m_A5 880
#define m_At5 932

#define m_Bb5 m_At5 #define m_B5 988
#define m_Cb5 m_B5 //83

#define m_C6 1047 //84
#define m_Bt6 m_C6
#define m_Ct6 1109
#define m_Db6 m_Ct6
#define m_D6 1175
#define m_Dt6 1245
#define m_Eb6 m_Dt6
#define m_E6 1319
#define m_Fb6 m_E6
#define m_F6 1397
#define m_Et6 m_E6
#define m_Ft6 1480
#define m_Gb6 m_Ft6
#define m_G6 1568
#define m_Gt6 1661
#define m_Ab6 m_Gt6
#define m_A6 1760
#define m_At6 1865
#define m_Bb6 m_At6 #define m_B6 1976 //95
#define m_Cb6 m_B6

#define m_C7 2093 //96
#define m_Bt7 m_C7
#define m_Ct7 2217
#define m_Db7 m_Ct7
#define m_D7 2349
#define m_Dt7 2489
#define m_Eb7 m_Dt7
#define m_E7 2637
#define m_Fb7 m_E7
#define m_F7 2794
#define m_Et7 m_E7
#define m_Ft7 2960
#define m_Gb7 m_Ft7
#define m_G7 3136
#define m_Gt7 3322
#define m_Ab7 m_Gt7
#define m_A7 3520
#define m_At7 3792
#define m_Bb7 m_At7 #define m_B7 3951 //107

#define m_Cb7 m_B7

#define m_C8 4186 //108
#define m_Bt8 m_C8
#define m_Ct8 4439
#define m_Db8 m_Ct8
#define m_D8 4699
#define m_Dt8 4978
#define m_Eb8 m_Dt8
#define m_E8 5274
#define m_Fb8 m_E8
#define m_F8 5588
#define m_Et8 m_E8
#define m_Ft8 5920
#define m_Gb8 m_Ft8
#define m_G8 6272
#define m_Gt8 6645
#define m_Ab8 m_Gt8
#define m_A8 7040
#define m_At8 7459
#define m_Bb8 m_At8 #define m_B8 7902 //119
#define m_Cb8 m_B8

Debugging
[Coming soon...] Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text

Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text

Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text

Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text

Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text

Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text

Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text text text Text
text text Text text text Text text text Text text text Text text text Text text text
Text text text Text text text Text text text Text text text Text text text Text text
text Text text text Text text text Text text text Text text text Text

Power

GND

TX

RX

Reset

USB Type Mini B (5 Connectors)

Fuses

FTDI Chip

Yellow LED (RX)

Green LED (TX)

Transistor

Red LED (Power)

MigProg
Text coming soon...

Content

Circuit Diagrams

Credites

Thomas Wappler / technic
Catrine Val / watercolour paintings
Franz Michael Schmid / illustrations
Henrike Rodegro / English translation

Copyright
This booklet is published under a creative comments attribution licence.

by Olaf Val

www.mignongamekit.com

