
Step by Step Instructions for

Programming

These Instructions combine an introduction to
programming with an outline of the historic development
of the first computer games.

All printed programming codes can be found on the Mignon Game Kit homepage
(www.mignongamekit.com) under “How-To” for download. Beginners are
advised to hand- copy small programmes to thus gain access to the working
process of programming.

Background History of Computer and Games

Apart from realising military applications games were also developed on the
very first computers. Computers did not yet feature screens and keyboards and

2006 Ralph Baer (left) receives the National Medal of Technology from president George W. Bush (right)

the developed games had very easy structures such as the “Nim Game” or the
XOX Game” on the EDSAC (1949 UK). Twelve years later, after the invention
of the transistor and microchips, more complex games such as “Space War”
emerged. But these could only be played in the few laboratories in which
computers were available. The situation changed when the television ingeneer
Ralph Baer had the idea to sell inexpensive Video Games to private households
in 1966.

At the time televisions generally had an inbuilt test image generator. While
working on such a machine Bear observed how facinating the playful
manipulation of the image through rotary switches was. His founding idea was
to built a device that anyone could connect to their television. This device
would draw simple synthetic forms on the display through analogue circuits- i.e.
without a computer. From this games developed.

Exercise 1: “Creation of a synthetic audio signal”

In essence our first homemade programme consists of the basic structure
setup and loop. Programming means writing commands that the computer can
recognise underneath oneanother. When starting the programme the commands
are executed from top to bottom. Firstly, there is an area for the presetting
that is only exectuted once per start-up. After that a (generally endless) loop is
processed. Both areas are usually framed by curly brackets.

• “File/New” is the start of a new Arduio file (Skatch)

• A commentary is the term for something that is supposed to happen. To mark
such lines as commentary they begin with two forward slashes “// ”

• The connection for the speaker is to be defined as the output.

• At the exit the power is constantly turned on and off.

• We built the “Setup” and “Loop” structure:

void setup(){
// set sound port as output
}

void loop(){
// turn the power on and off
}

• Please note the differentiation between the round and curly brackets.

• Now we still need the appropriate commands to implement what is described
in the commentaries.

• pinMode (number of connection, OUTPUT or INPUT);

• digitalWrite (number of connection, HIGH or LOW)

• Commands always end with a semikolon “;”

• Spacing and word wrap do not effect the functioning, but are important for
the readability of the codes. The indents in particular keep interlockings lucid.

The first video game consisted of a dot placed on the screen. By use of a riffle
endowed with a photocell the dot on the television could be “shot”.

Excercise 2: “A Dot”

We put a dot on the display of the game kit. To do so we use the command
„gamekit.set_pixel(row, collumn, value)“. As this command comes from the
Game Kit Library, we need to first integrate and activate it. This happens with
the following two programming rows: “#include <gamekit.h>” and “gamekit.
Begin();”

void setup(){
 // set sound port as output
 pinMode(9, OUTPUT);
}

void loop(){

 // turn the power on and off
 digitalWrite(9, HIGH);
 delay(1);
 digitalWrite(9, LOW);
 delay(1);
}

//One Dot

#include <gamekit.h>

void setup(){
 gamekit.Begin();
}

void loop(){
 gamekit.set_pixel(2,3,15);
}

As we are missing the rifle sensitive to light we have to cease modelling the
first video game at this point. But if one carries on putting points on the display
it is possible to create signs e.g. Smileys with this little programme.

Ralph Baer continued his experiment “video game”. The next step involved
moving the dot with two rotary switches and he produced first sketches of a
Joystick for controlling the dots.

Excersise 3: “Move A Dot”

To move the dot the keys are queried with the following function:

// Move one Dot

#include <gamekit.h>

int row = 2;
int column = 3;

void setup(){
 gamekit.Begin();

}

void loop(){

 gamekit.set_pixel(row,column,15);

 if(gamekit.button_pressed(butt_UP)){
 gamekit.set_pixel(row,column,0);
 row--;
 }

 if(gamekit.button_pressed(butt_DOWN)){
 gamekit.set_pixel(row,column,0);
 row++;
 }

When a key is operated the commands in between the curly brackets are
executed.

In order to make the dot moveable a variable is added to the „gamekit.set_
pixel()“ function for the position of the dot. These variables need to be defined
with the command int (Integer) before setup. The value of these variables are
lowered or raised by one with the orders “++” and “- -“. Thus the dot moves
across the display. Lowering the brightness value from 15 to 0 erases the old
dot.

if(gamekit.button_pressed(Konstante)){

}

This “Move One Dot” programme can easily create a “paint programme” by
removing the erasure of the dots from the button query. In a further step the
putting and erasing of dots can be coupled to the functioning keys.

The historic development now reached the collision query and thus a very
substantial element of computer games. Ralph Baer expanded his circuits in a
way that generated two dots. A second player could control the second dot.
Now it was possible to play “catch”.

 if(gamekit.button_pressed(butt_LEFT)){
 gamekit.set_pixel(row,column,0);
 column--;
 }

 if(gamekit.button_pressed(butt_RIGHT)){
 gamekit.set_pixel(row,column,0);
 column++;
 }

}

Exercise 4: “Chasing Game“

As the Game Kit only disposes of six sensors the second player runs diagonally
in the chasing game. For the recognition of the collision we use an “if”
query. Please note: to compare the two dots position the double equal sign
is used. The single equal sign is used to allocate values to the variables. So,
we differentiate between an equal sign for allocation and an equal sign for
comparison. The comparisons of the “if”- query are set in round brackets. In
this case two conditions need to be true at the same time. They are connected
by “&&”.

To move two dots on the display the variables for the second dot are doubled
(row2, column2). And the second dot is allocated the blink value 18 in order to
differentiate between the two dots.

For the collision the blink value is set to 20. The “delay()” function pauses the
game for two seconds. After that the dots return to their starting positions.

// Chasing Game

#include <gamekit.h>

int row1 = 1; // Dot1
int column1 = 1;

int row2 = 3; // Dot2
int column2 = 5;

void setup(){
 gamekit.Begin();

}

void loop(){

 gamekit.set_pixel(row1,column1,15);
 gamekit.set_pixel(row2,column2,18);

 if(gamekit.button_pressed(butt_UP)){
 gamekit.set_pixel(row1,column1,0);
 row1--;
 }

 if(gamekit.button_pressed(butt_DOWN)){
 gamekit.set_pixel(row1,column1,0);
 row1++;
 }

 if(gamekit.button_pressed(butt_LEFT)){
 gamekit.set_pixel(row1,column1,0);
 column1--;
 }

 if(gamekit.button_pressed(butt_RIGHT)){
 gamekit.set_pixel(row1,column1,0);
 column1++;
 }

 if(gamekit.button_pressed(butt_FUNCA)){
 gamekit.set_pixel(row2,column2,0);
 column2--;
 row2--;
 }

 if(gamekit.button_pressed(butt_FUNCB)){
 gamekit.set_pixel(row2,column2,0);
 column2++;
 row2++;
 }

//collision detection
 if((row1 == row2)&&(column1==column2)){

 // blink for 2 seconds
 gamekit.set_pixel(row1,column1,20);
 delay(2000);

 // go back to start positions
 gamekit.set_pixel(row1,column1, 0);
 row1 = 1;
 column1 = 1;
 row2 = 3;
 column2 = 5;
 }
}

The casing game gives a first impression of the possibilities of a videogame,
but even during pioneering times Ralph Baer and his co-workers realised, that
the game was not entertaining enough to promise great marketing success.
Shortly after, the breakthrough was brought on by a special circuit that enabled
the presentation of a dot on the screen that moved without being moved by a
player: the ball!

Exercise 5: “Mignon Pong”

We add a third dot and built the movement of the first two dots in a way that
makes them move up and down on the left and the right like pong rackets. The
magical programming row that takes care of the independent movement of the
ball is very simple:

The variable “column3” is allocated a value that corresponds to its current value
plus the value of the variable “columnM” in this case +1 or -1. At every call of
this function the ball moves one dot to the right or to the left.

To ensure the ball moves nicely and slowly we write the entire control of the
ball in an if-loop that queries the system counter of the game kit and only

column3 = column3 + columnM;

moves the ball at every hundreds rise of the counter. We need another variable
“balltime” in which the current value of the counter is saved once, and than
compared with the consecutive counter until it has moved on one hundred
steps.

If the collision query is changed in such a way that the ball „hits“ the rackets
and in doing so the value for the horizontal movement “columnM“ changes its
sign the game almost looks like Pong. The ball moves from racket to racket but
the vertical movement of the ball is missing. For this we use – for simplicities
sake- random values, that are generated by the command “random()”. At the
same time another if- query becomes necessary, that prevents the ball leaving
the display on the top or bottom. Here again by the changing of the sign of the
variable for movement “rowM” a rebound is generated.

To prevent the same random values to be generated every time the game kit
is switched on the beginning of the series of random values, the so called
“randomSeed”, is set to a changing value in the “Setup”. This value is best
measured at the analogue input of the extension port. If no sensors such as
photocells, microphone, or pressure sensor, are connected a noise is measured
that delivers good coincidental values.

// Mignon Pong

#include <gamekit.h>

int row1 = 2; // Dot1
int column1 = 0;

int row2 = 2; // Dot2
int column2 = 6;

int row3 = 2; // Dot 3
int column3 = 3;
int rowM = 1;
int columnM = 1;
int balltime = 0;

void setup(){
 gamekit.Begin();
 //set the random seed to a noise value which is measured on the
analogue input pin 5 of the extensions port
 randomSeed(analogRead(5));
}

void loop(){

 gamekit.set_pixel(row1,column1,15);
 gamekit.set_pixel(row2,column2,15);
 gamekit.set_pixel(row3,column3,15);

 if(gamekit.button_pressed(butt_UP)){
 gamekit.set_pixel(row1,column1,0);
 row1--;
 }

 if(gamekit.button_pressed(butt_DOWN)){
 gamekit.set_pixel(row1,column1,0);
 row1++;
 }

 if(gamekit.button_pressed(butt_FUNCA)){
 gamekit.set_pixel(row2,column2,0);
 row2--;
 }

 if(gamekit.button_pressed(butt_FUNCB)){
 gamekit.set_pixel(row2,column2,0);
 row2++;
 }

 // move ball
 if(gamekit.get_systemcounter()> 100+balltime){
 balltime = gamekit.get_systemcounter();

 // collision detection 1
 if(((row1 == row3+rowM)&&(column1==column3+columnM))||(
(row2 == row3+rowM)&&(column2==column3+columnM))){
 columnM = columnM*-1;
 rowM = random(3)-1; // find a new angle for the balls path by
chance
 if(row3==4) rowM = random(2)-1;
 if(row3==0) rowM = random(2);
 }

 gamekit.set_pixel(row3, column3, 0); // turn the old dot off

 column3 = column3 + columnM; // move the dot further

 // bounce at top and bottom
 row3 = row3 + rowM;
 if(row3 +rowM <= -1){
 rowM = 1;
 }
 if(row3 +rowM >= 5){
 rowM = -1;
 }
 }
}

Now we reach a point at which the elementary principles of digital games
have been worked through. With the learned functions new variations can be
invented and games can be programmed easily.

At this stage of development Ralph Baer tried to market his product
unsuccessfully in 1967. Only years later, in 1972 he was able to convince the
company Magnavox to realize his vision with the “Magnavox Odyssey”. The
first video console of the world was based on simple functions: Dots could be
moved across the screen, moved by themselves, and it was noticeable when
they hit each other. There were no sounds, no images, and no counter. Thus the
“Magnavox Odyssey” included foils -with printed on motives of games that were
stuck on the screen- and cards for counting scores.

So far, our exercises lack these components that turn an abstract game principle
into an attractive videogame. In regard to this various possibilities exist that
were discovered step-by-step in the history of computer games and lead to
great commercial success. “Space Invaders” introduced the concept of several
lives of the player in 1978. A figure in a game was given a name for the first
time with “Pac-Man” in 1980, and the first character was established with
“Mario” in 1981.

6. Exercise: „Intro Image“

We design a series of images with which we can represent small stories that
are suitable to combine an abstract structure of a game with a motive. Images,
sounds, and melodies raise the level of entertainment: There is identification
with the avatar, an increase of sensuous appeal, and fantasy is stimulated.

To draw an image on the display we can work with the already used “set_pixel”

function. However, the “load_image” function from the Game Kit Library is more
comfortable.

As the images use a special type of variables the library “pgmspace” needs to
be integrated. After that the images are immediately defined with the variables.
This is a task for the advanced: One uses an array of Unsinde Integer 8 bit
variables that are placed in the programme memory. You do not have to deal
with that right now! The easiest way is to insert the respective codes using
“copy and paste”. Instead of “myman” any chosen title can be used for the
image. The five rows of numbers with the seven values represent the rows of
the display with their seven LEDs. At the value of zero the diode is turned off.
At the maximum value of 15 it shines the brightest. The values in between allow
for working withnuances. The “load_imge” function loads the image onto the
display.

uint8_t myman[5][7] PROGMEM = {
// Dot Values
};

gamekit.load_image(myman);

// Intro Image

#include <gamekit.h>
#include <avr/pgmspace.h>

uint8_t myman[5][7] PROGMEM = {
 0 ,0 ,0 ,15,0 ,0 ,0 ,
 0 ,3 ,3 ,3 ,3 ,3 ,0 ,
 0 ,0 ,0 ,3 ,0 ,0 ,0 ,
 0 ,0 ,3 ,0 ,3 ,0 ,0 ,
 0 ,0 ,3 ,0 ,3 ,0 ,0 ,
};

void setup(){
 gamekit.Begin()
}

void loop(){
 gamekit.load_image(myman);
}

7. Exercise: „Intro Animation“

You can easily produce an animation by simply defining several images and
open them one after another. The speed of the changing of the pictures is de-
fined by the “delay” commands behind the “load_image” commands.

The following example follows a more elegant path. Again only one image is
defined. However, it functions like a film reel. In the example the dancing man
consists of a series of five images. This film reel is pushed from the bottom to
the top across the display. Thus an animation is generated.

To load an image that is bigger than the 5 x 7 grid you use the “load_map”
command. In this case the image is moved in its entirety, i.e. it jumps up 5
rows. For the line- pulling the variable “i” is used, that is raised with the com-
mand „i+=5“ at each round. An „if“ command returns „i“ to zero.

// Intro Animation

#include <gamekit.h>
#include <avr/pgmspace.h>

uint8_t dancingman [25][7] PROGMEM = {
 0 ,0 ,0 ,9 ,0 ,9 ,0 ,
 0 ,9 ,9 ,9 ,9 ,0 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,
 0 ,9 ,0 ,0 ,9 ,0 ,0 ,

 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,9 ,9 ,9 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,

 0 ,9 ,0 ,9 ,0 ,9 ,0 ,
 0 ,0 ,9 ,9 ,9 ,0 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,
 0 ,0 ,9 ,0 ,9 ,0 ,0 ,

 0 ,0 ,0 ,0 ,0 ,0 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,9 ,9 ,9 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,0 ,9 ,9 ,0 ,

 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,9 ,9 ,9 ,0 ,
 0 ,0 ,0 ,9 ,0 ,0 ,0 ,
 0 ,9 ,9 ,0 ,9 ,0 ,0 ,
 0 ,0 ,0 ,0 ,9 ,0 ,0 ,

};

void setup(){
 gamekit.Begin();
}

int i = 0;

void loop(){

 gamekit.load_map((uint8_t *) dancingman, 25, 7, i, 0);
 delay(600);

 i=i+5;

 if(i >= 25)
 i = 0;
}

